Sybermedia Center SC23 BOOTH 857

Osaka University, Japan

Large-scale Computing Systems at the Cybermedia Center

Overview of High-Performance Computing Environment at the CMC

Large-scale computing systems (OCTOPUS and SQUID) and data aggregation infrastructure (ONION) are deployed on CMC-Supercomputer network, a.k.a CMC-SCinet, a low-latency and wide-bandwidth network. This architectural design allows users to access to large-scale storage systems, perform large-scale high-performance computation and analysis on our large-scale computing systems.

Large-scale Computing Systems

OCTOPUS

OCTOPUS is short for Osaka university Cybermedia cenTer Over-Petascale Universal Supercomputer. OCTOPUS is a cluster system being operated since December 2017. This system is composed of General purpose CPU nodes, GPU nodes, Large-scale shared-memory nodes, and Xeon Phi nodes, total 319 nodes. These nodes and large-scale storage EXAScaler (Lustre 3.1 PB) are interconnected on InfiniBand EDR (100 Gbps) and form a cluster.

Table 1 Data Sheet of OCTOPUS

Type of nodes	General purpose CPU	GPU	Large-scale shared-memory	Xeon Phi
СРИ	Intel Xeon Skylake (2.6 GHz, 12 cores) x 2		Intel Xeon Skylake (2.0 GHz, 16 cores) x 8	Intel Xeon Phi KNL (1.3 GHz, 64 cores)
os	RHEL 7.6			
# of nodes (total)	236	37	2	44
# of cores (total)	5,664	888	256	2,816
# of memories (total)	45 TB	7 TB	12 TB	8 TB
Peak performance	471.2 TFLOPS	858.3 TFLOPS	16.4 TFLOPS	117.1 TFLOPS
Accelerator		NVIDIA Tesla P100 (NVLink) x 148		

SQUID

SQUID is short for Supercomputer for Quest to Unsolved Interdisciplinary Datascience. SQUID is a cluster system being operated since May 2021. This system is composed of General purpose CPU nodes, GPU nodes, and Vector nodes, total 1,598 nodes. These nodes and large-scale storage EXAScaler (Lustre 21.2 PB) are interconnected on InfiniBand HDR (200 Gbps) and form a cluster.

Table 2 Data Sheet of SQUID

Type of nodes	General purpose CPU	GPU	Vector
СРИ	Intel Xeon Icelake (2.4 GHz, 38 cores) x 2		AMD EPYC Rome (2.8 GHz, 24 cores)
os	Rocky 8.6		
# of nodes (total)	1,520	42	36
# of cores (total)	115,520	3,192	864
# of memories (total)	389 TB	22 TB	5 TB
Peak performance	8.871 PFLOPS	6.797 PFLOPS	0.922 PFLOPS
Accelerator		NVIDIA HGX A100 8-GPU x 42	NEC SX-Aurora TSUBASA Type20A x 288

Data Aggregation Infrastructure

ONION

ONION stands for Osaka university Next-generation Infrastructure for Open research and open innovatioN. ONION is a new data aggregation infrastructure that is linked to SQUID. ONION consists of ONION-object (AWS S3 compatible object storage), ONION-file (storage service using Nextcloud), and EXAScaler (a parallel file system based on Lustre).

ONION makes it easy for users to transfer data between your PC and large-scale computing system. In addition, ONION can be used in a variety of ways, such as immediate sharing of calculation results with those who do not have a SQUID or OCTOPUS account and manipulating data from a smartphone. Of course, it can also be used to store and share research data in the laboratory.

Table 3 EXASCALET (OIT SQUID)			
Effective capacity (HDD)	20 PB		
Effective capacity (NVMe)	1.2 PB		
Max number of inodes	Approx. 8.8 Billion		
Max expected effective throughput (HDD)	Over 160 GB/s		
Max expected effective throughput (NVMe)	Write: Over 160 GB/s Read: Over 180 GB/s		

Table 4 ONION-object

Effective capacity	950 TiB * We plan to expanse sequentially
Data protection method	Erasure Coding (Data chunk:4 + Parity chunk:2)