Osaka University, Japan

Large-scale Computing Systems at the D3 Center

Overview of High-Performance Computing Environment at the D3C

Large-scale computing systems (SQUID) and data aggregation infrastructure (ONION) are deployed on D3C-Supercomputer network, a.k.a D3C-SCinet, a low-latency and wide-bandwidth network. This architectural design allows users to access large-scale storage systems, perform large-scale high-performance computation and analysis on our large-scale computing systems.

*Cybermedia Center (CMC) has been reorganized into the D3 Center. *

Large-scale Computing Systems

SQUID

SQUID is short for Supercomputer for Quest to Unsolved Interdisciplinary Datascience. SQUID is a cluster system being operated since May 2021. This system is composed of General purpose CPU nodes, GPU nodes, and Vector nodes, total 1,598 nodes. These nodes and large-scale storage EXAScaler (Lustre 21.2 PB) are interconnected on InfiniBand HDR (200 Gbps) and form a cluster.

Data Sheet of SQUID

Type of nodes	General purpose CPU	GPU	Vector
СРИ	Intel Xeon Icelake	e (2.4 GHz, 38 cores) x 2	AMD EPYC Rome (2.8 GHz, 24 cores)
os		Rocky Linux 8.8	
# of nodes (total)	1,520	42	36
# of cores (total)	115,520	3,192	864
Memory capacity (total)	389 TB	22 TB	5 TB
Peak performance	8.871 PFLOPS	6.797 PFLOPS	0.922 PFLOPS
Accelerator		NVIDIA HGX A100 8-GPU x 42	NEC SX-Aurora TSUBASA Type20A x 288

mdx II

mdx II is a system composed of compute nodes and storage built on OpenStack. Each resource is provided through virtual machines, delivering an isolated environment for each project. In addition to supercomputer-like applications such as large-scale data processing and high-performance computing, it can be used for a broader range of flexible purposes, including hosting data repositories and data platforms. (GPU nodes are currently under procurement.)

 * mdx I and II are jointly operated by 9 universities and 2 research institutes in Japan. *

Features of the mdx II User Portal

•Resource Monitoring: View real-time CPU, memory, and storage usage on a simple dashboard.

·Virtual Machine Management: Create, edit, or delete VMs from the portal.

•Network Management: Set up networks, floating IPs, and security set-

·Storage Management:

Manage, expand, or delete volumes.

СРИ	Intel Xeon Platinum 8480+ (56 cores) x 2	
# of nodes (total)	60	
# of cores (total)	6,720	
Memory capacity (total)	30 TB	
Peak performance	430.08 TFLOPS	

Overview of mdx II User Portal

Data Aggregation Infrastructure

ONION

ONION stands for Osaka university Next-generation Infrastructure for Open research and open innovatioN. ONION is a new data aggregation infrastructure that is linked to SQUID. ONION consists of ONION-object (AWS S3 compatible object storage), ONION-file (storage service using Nextcloud), and EXAScaler (a parallel file system based on Lustre).

ONION makes it easy for users to transfer data between your PC and large-scale computing systems. In addition, ONION can be used in a variety of ways, such as immediate sharing of calculation results with those who do not have a SQUID account and manipulating data from a smartphone. Of course, it can also be used to store and share research data in the laboratory.

Data Sheet: EXAScaler (on SQUID)

Effective capacity (HDD)	20 PB
Effective capacity (NVMe)	1.2 PB
Max number of inodes	Approx. 8.8 Billion
Max expected effective throughput (HDD)	Over 160 GB/s
Max expected effective throughput (NVMe)	Write: Over 160 GB/s Read: Over 180 GB/s

Data Sheet: ONION-object

	Effective capacity	950 TiB
	Data protection method	Erasure Coding (Data chunk:4 + Parity chunk:2)