
Visit us at www.cmc.osaka-u.ac.jp

Osaka University, Japan
SC22 BOOTH 1613

About Us：Cybermedia Center, Osaka University

University-Wide Services

 As a resource provider of knowledge and technology derived from advanced researches conducted in Osaka
University, the Cybermedia Center (CMC) offers support in the areas of large-scale computation, information com-
munication, multimedia content and education. The center also works closely with educational and research orga-
nizations within Osaka University, as well as with industries and institutes outside the University. By sharing its
resources and encouraging local communities to use its facilities for public lectures and other events, CMC has
helped to create a more internationally-oriented IT society for the region.

Repair and Maintenance of the Information Network, a
high-speed, stable and reliable campus-wide network environment,
as well as wireless access networks, as information infrastructure for
supporting the educational, research, and social contribution activities
of Osaka University.

Academic Cloud improves the integration of computing resources
scattered across the university. The objectives of the system are to
optimize administrative operations, enhance security, and reduce
costs.

IT Core Annex is a two-story steel-frame data center housing
large-scale computers. The perimeter wall is designed with gently
curving surface and light-permeable metal panels, to harmonize with
the surrounding environment.

Large-Scale Computer System, we provide a high-performance
computing environment, consisting of OCTOPUS and SQUID, to both
the academic and industrial communities. Part of the overall computer
system is provided, as a computational resource, to the national
High-Performance Computing Infrastructure(HPCI).

Information Media Education Multimedia Language Education,
we have implemented a consistent curriculum, from the basics of
computer utilization to advanced subject matter, while the Computer
Assisted Language Learning System supports foreign language
learning and cross-cultural understanding in accordance with each
individual’s language-proficiency level.

Cybermedia Commons is an active learning space for students,
exploiting a wide variety of the Cybermedia Center’s information
technology, to support student’s active learning and research
activities.

Digital Library provides academic information databases and remote
access to electronic journals. It is equipped with multimedia terminals
and public network jacks with an authentication system.

Location Map

Kyoto

Osaka
Tokyo

★

Cybermedia Commons

Location
Open-type cooling tower

Cooling mechanism in IT Core Annex

Exhaust vent celling Cap

Air-conditioning chamber chilled-water
air-conditioner

First
floor

Outer
wall

Inner wall

Air passage

Cold aisle

Hot aisle

Server Rack
Second
floor

Centrifugal chiller

Contact : sc22@ais.cmc.osaka-u.ac.jp　http://www.hpc.cmc.osaka-u.ac.jp/en/

Osaka University, Japan
SC22 BOOTH 1613

Large-scale Computing Systems at the Cybermedia Center

Large-scale computing systems (OCTOPUS and SQUID) and data aggregate
infrastructure (ONION) are deployed on CMC-Supercomputer network, a.k.a
CMC-SCinet, a low-latency and wide-bandwidth network. This architectural design
allows users to access to large-scale storage systems, perform large-scale
high-performance computation and analysis on our large-scale computing
systems.

Overview of High-Performance Computing Environment at the CMC

Large-scale Computing System

Data Aggregation Infrastructure

OCTOPUS

OCTOPUS is short for Osaka university Cybermedia cenTer
Over-Petascale Universal Supercomputer. OCTOPUS is a cluster
system being operated since December 2017. This system is
composed of General purpose CPU nodes, GPU nodes, Large-scale
shared-memory nodes, and Xeon Phi nodes, total 319 nodes.
These nodes and large-scale storage EXAScaler (Lustre 3.1
PB) are interconnected on InfiniBand EDR (100 Gbps) and form
a cluster.

Table 1 Data Sheet of OCTOPUS

Intel Xeon Skylake
(2.6 GHz, 12 cores) x 2

RHEL 7.3

Intel Xeon Phi KNL
(1.3 GHz, 64 cores)

Type of nodes General purpose
CPU

GPU Large–scale
shared-memory

Intel Xeon Skylake
(2.0 GHz, 16 cores) x 8

236

5,664

45

471.2 TFLOPS

37

888

7

16.4 TFLOPS

2

256

12

858.3 TFLOPS

NVIDIA Tesla
P100 x 148

44

2,816

8

117.1 TFLOPS

Xeon Phi

CPU

OS

of nodes (total)

of cores (total)

of memory (total)

Peak performance

Accelerator

SQUID

SQUID is short for Supercomputer for Quest to Unsolved
Interdisciplinary Datascience. SQUID is a new cluster system
being operated since May 2021. This system is composed of
General purpose CPU nodes, GPU nodes, and Vector nodes,
total 1,598 nodes. These nodes and large-scale storage EXAS-
caler (Lustre 21.2 PB) are interconnected on InfiniBand HDR
(200 Gbps) and form a cluster.

Table 2 Data Sheet of SQUID

Intel Xeon Icelake (2.4 GHz, 38 cores) x 2

CentOS 8.4

AMD EPYC Rome
(2.8 GHz, 24 cores)

Type of nodes General purpose
CPU GPU

1,520

115,520

389 TB

8.871 PFLOPS

 42

3,192

22 TB

6.797 PFLOPS

NVIDIA
A100 x 336

NEC SX-Aurora TSUBASA
Type20A x 288

36

864

5 TB

0.922 PFLOPS

Vector

CPU

OS

of nodes (total)

of cores (total)

of memory (total)

Peak performance

Accelerator

ONION stands for Osaka university Next-generation Infrastructure for Open research
and open innovatioN. ONION is a new data aggregation infrastructure that is linked to
SQUID. ONION consists of ONION-object (AWS S3 compatible object storage) ,
ONION-file (storage service using Nextcloud) , and EXAScaler (a parallel file system
based on Lustre) .
ONION makes it easy for users to data between your PC and large-scale computing
system. In addition, ONION can be used in a variety of ways, such as immediate sharing
of calculation results with those who do not have a SQUID or OCTOPUS account and
manipulating data from a smartphone. Of course, it can also be used to store and share
research data in the laboratory.

Table 3 EXAScaler (on SQUID) Table 4 ONION-object

Effective capacity (HDD) 20 PB

1.2 PB

Approx. 8.8 Billion

Over 160 GB/s

Write : Over 160 GB/s Read : Over 180 GB/s

Effective capacity (NVMe)

Max number of inodes

Max expected effective throughput (HDD)

Max expected effective throughput (NVMe)

Effective capacity
950 TiB

* We plan to
expanse sequentially

Erasure Coding
(Data chunk:4 +
Parity chunk:2)

Data protection method

Supercomputer
Network

Cloud

Internet
Login & Front End
Node

USER

ONION

file

object

EXAScaler

Cloud

S3

S3

S3 S3 SFTP
S3

S3
S3

SCP/SFTP
For high-speed
analysis

For archives

For data manipulation

SQUID users

SFTP
S3

DAV

HTTPS

PC Browser Mobile

Primary storage
Primary storage

HTTPS

WWW

HTTPS

S3

Cameras /
Sensors

Cameras /
Sensors

Lustre

External
storage

Osaka University, Japan
SC22 BOOTH 1613

AI assisted job scheduler / Profile guided vector optimization

Contact : sc22@ais.cmc.osaka-u.ac.jp　https://www.cmc.osaka-u.ac.jp/

AI assisted job scheduler: Cloud Burst Optimization with Deep Q Network

Profile guided vector optimization for SX-Aurora TSUBASA

・Cloud bursting becomes attractive for HPC systems to prevent an
increase of job waiting time under high load.
・However, it is still difficult to control the tradeoff between job waiting

time and cloud cost.

□ EP/SP/BT: PGO achieves great improvement
□ CG/MG: Compiler already achieves good performance. No room for PGVO.
□ FT/IS/LU: Some room for optimization, but current PGVO achieves little or no improvement.

These works were carried out in Joint Research Laboratory for Integrated Infrastructure of High Performance Computing and Data Analysis
https://www.nri.cmc.osaka-u.ac.jp/

SLURM DQN Agent

state

action

reward

Scheduling
thread

Node Select
Plugin with

DQN I/F

inference

Training
(async)

Model
update

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 (V
E=

1)

Background

・Proposed architecture can control tradeoff between waiting time and
cloud costs

Results

・Evaluation and implementation of the proposed method into the
SLURM scheduler

Future Work

・Job scheduler with DQN (Deep Q Network) that can optimize the
tradeoff of cloud bursting

Proposal

・Job scheduler provides state of job queue and on-premise and cloud
resources to DQN when scheduling a job
・DQN returns action that shows the scheduler should assign

on-premise or cloud resources to the job or skip scheduling
・Job scheduler schedules the job based on the action
・Job scheduler provides reward to DQN for evaluating the action

based on a waiting time and a cloud cost

Architecture

・Realization of vector optimization by users without HW knowledge

Background

・Significant performance improvement by PGVO compared to
automatic vectorization compiler with 3/8 workloads* of NPB

 (* Human-optimized codes that assumes tool behavior are evaluated)

Results

・Implement as a tool and confirm the feasibility
・Evaluate with more workloads
・Support more vectorization technologies

Future Work

・Automatic source-to-source translation tool by Profile Guided Vector
Optimization (PGVO) for SX-Aurora TSUBASA

Proposal

・PGVO uses source codes, compiler analysis results and execution
profile data as inputs
・PGVO outputs translated source codes

Architecture

do Vector op ratio
Ave. vector length

Profile guided vector
optimizer

optimized source code

Inline expansion
Loop collapse
Outer-loop vectorization
…

Exec. profile dataSource code

Loop unvectorized
Dependency unknow

Compiler analysis result

a[i]=a[i]+1
i = 1..100

・ NPB 3.4.2 (omp version)
・ VE: SX-Aurora 20B
 1VE(8core) + ncc/nfort

Input (State):
・Job queue
・On-premise resource
・Cloud resource

Output:
Q-values of actions

Available
Allocated

Observation part

Job queue

On-premise resource

Cloud resource

Job scheduler DQN Agent

Nodes

Time

State Reward

Action

Backlog part

Waiting time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

dqn

w
ai

tin
g

tim
e

Cost

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

dqn

co
st

(mw, mc) = (0.5, 0.5)
(mw, mc) = (0.4, 0.6)
(mw, mc) = (0.3, 0.7)
(mw, mc) = (0.2, 0.8)

Osaka University, Japan
SC22 BOOTH 1613

Provenance Recording System for Research Data Management

Contact : sc22@ais.cmc.osaka-u.ac.jp　https://www.cmc.osaka-u.ac.jp/

Background

・ Growing importance of research data management (RDM)
 ・To ensure reproducibility (transparency): Preserving data that

provide evidence of research results
 ・To improve reusability: Promoting the global sharing of knowledge

and increasing research efficiency

・Provenance, which identifies the input data and the process used to
obtain data, should be secured for reproducibility and reusability

・HPC systems generate data through simulations and experiments,
but there is no established method to manage the provenance of
the data

・A system that implements RDM on HPC systems is needed

Prototype

Tracer captures system call invocations (exec(), open(), write(), etc.) of
a user program. BPF, a low overhead observability scheme in Linux
kernel is used for the capture. Tracer also captures metadata (date
created, SHA-256, etc.). No modifications in the user program and
operations are required.

Aggregator builds a provenance of files from the history of the system
call invocation: a file read/written by a process is an input/output of the
process in the provenance. Parallel processes by MPI are aggregated.

The provenance and the metadata are stored in Apache Atlas (an
open-source data catalog).

Find and verify the provenance and the metadata of a file (shown
below).

This work was carried out in Joint Research Laboratory for Integrated Infrastructure of High Performance Computing and Data Analysis
https://www.nri.cmc.osaka-u.ac.jp/

Show the provenance of a file Show the metadata of a file

Use cases

Requirements for Provenance Recording System

・Automatically record the provenance and the metadata (date/user
created, etc.) of a file generated in a HPC system
・Support a typical HPC environment: workload manager (Slurm),

MPI, etc.
・Minimalize impacts on performance and user’s operations
・Secure the records not to be falsified
・Provide interfaces to verify that a file has not been fabricated/falsified

1

2

3

4

 Provenance Recording System

Use

HPC System

View / Verify

Collaborator,
Reviewer, etc.

Record

Tracer
1

4
View / Verify
4

Reseacher

Example of a provenance

db.dat db.dat

raw.dat

result.csv

File

Process

convert

simulation

in out

args: -k 1 date: 2022-09-09
user: u1
digest: 0xabcd...

Collaborator

Researcher

Computing Center

Operate

Provenance

Publish

Verify

Collect

Discussion
on the data

Gather data from
equipment

Experiment
in a HPC system Author a paper

Publish the paper
and the data

Reviewer

Review

Another
Researcher

Reuse

Database

Aggregator

3

2

Contact : sc22@ais.cmc.osaka-u.ac.jp　https://www.cmc.osaka-u.ac.jp/

Osaka University, Japan
SC22 BOOTH 1613

ns-3-based Interconnect Simulator for Network Simulation with Job Scheduling

Background : Aim of Interconnect Design in Supercomputing Systems is Changing

A variety of jobs are performed on today's supercomputing systems. The number of compute nodes requested by such jobs is diverse and then
much inter-node communication take place.
⇨ Interconnects of supercomputing systems should be designed using simulators to examine the performance in communication.

Problem: The Effects of Job Scheduling Are Missed by Existing Network Simulators

When simulating interconnects in a supercomputing system, the simulation result is incorrect in the case of using only existing network simulators.
The reason is existing network simulators cannot reproduce job placement by job schedulers.

Proposal : ns-3-based Interconnect Simulator for Interconnect Design (In-Progress)

To achieve network simulation with job scheduling, we decided to implement a job scheduling function as a module for ns-3.

・Assets: Interconnect research results are implemented in ns-3, enabling simulations using state-of-the-art technologies.
・Expandability: ns-3 is modularized, making it easy to expand the job scheduling functionalities.
・Packet-level simulation: accurate simulation of network latency should reduce performance estimation errors.

[1] P. Fuentes, E. Vallejo, C. Camarero, R. Beivide and M. Valero, "Throughput Unfairness in Dragonfly Networks under Realistic Traffic Patterns," 2015 IEEE International Conference on Cluster Computing, 2015, pp. 801-808, doi: 10.1109/CLUSTER.2015.136.

・Traffic patterns* are changed by job placement.
 (*A set of communications within a certain time period)

・Topology
・Routing algorithm
・TCP congestion control algorithm
・Job scheduling algorithm

By repeating Step 0 ~ 2 with different inputs,
interconnect design based on quantitative comparisons will be achieved.

Example of link capacity consumption depending on job placement

・Number of request nodes
・Contents of communication

(prepared communication pattern
or pcap file) and computation
time (communication interval)

・Adversarial traffic patterns** cause misunderstanding of the
network performance. (**Traffic patterns that degrade network
performance)

Adversarial traffic patterns in DragonFly topology [1]

User Input

Parameter file

Job scripts

Setup topology as input filesStep 0

According to the job scheduling algorithm,
the job scheduler dynamically places traffic
generators using the ns3 Schedule function

Step 1

Step 2
Present simulation results including job runtime and
bottleneck links/switches

Traditional Supercomputing Systems

Computation-intensive MPI (Message
Passing Interface) jobs.

・Select from stable and mature technologies
 such as Fat-tree and ECMP.
・Parameters are determined by calculations
 and other simple estimates.

Expected Workload

Aim of Interconnect
Design

Method of Interconnect
Design

Focus on the cost to increase the number
of compute nodes.

Next Supercomputing System

Communication-intensive jobs using
distributed processing frameworks.

・Select from stable and mature technologies
and/or state-of-the-art technologies such
as DragonFly and adaptive routing.
・Parameters are determined by simulations

to examine interconnect performance.

Expected Workload

Aim of Interconnect
Design

Method of Interconnect
Design

Focus on the performance to accelerate
inter-node communication.

Adversarial traffic patterns cause bottlenecks,
resulting in simulation results worse.
⇨ Job placement also affects simulation
results because of increasing adversarial traffic
patterns.

job1 job1

job2 job2

Bandwidth consumption increases
when communicat ing between
distant nodes
⇨ Without simulating job placement
accurately, bandwidth consumption
is not simulated accurately.

Contact : sc22@ais.cmc.osaka-u.ac.jp　https://www.cmc.osaka-u.ac.jp/

Osaka University, Japan
SC22 BOOTH 1613

Toward a Practical Cloud Bursting Operation on SQUID

Background

The on-premise supercomputing systems in CMC are sometimes faced with a surge of
the computing demand. This situation causes a longer wait time from when a user
submits a job until when the job starts. In order to alleviate the peak, we have built
SQUID as our new on-premise supercomputing system with the idea of offloading the
workloads on an on-premise supercomputing system to cloud computing resources.
This idea is referred to as cloud bursting.

Environment

Performance profile

Operation view

The cloud bursting environment on SQUID allows the users to execute their jobs without their being aware of Azure. The following two ideas
achieve transparency in terms of usage.

• Cloud bursting queue which dynamically allocates their jobs to SQUID or Azure.
• CPU computing nodes on SQUID and Azure access Lustre on SQUID with NFS.

However, the cloud bursting environment discourages the users from executing their jobs on Azure. This reason is they have to be aware of Azure
in terms of performance and monetary cost.

• The two queues on SQUID
　1. Cloud bursting queue : Transparency in terms of usage, low cost for the users
　2. Cloud-dedicated queue : Immediate provision of computing resources, high cost
　　 for the users.

To improve transparency in terms of performance and cost, we propose three
operations on SQUID which combine the staging functionality and the two queues.
Policy 1. Staging functionality unable + Cloud bursting queue
Policy 2. Staging functionality enable + Cloud-dedicated queue
Policy 3. Improved staging functionality enable + Cloud bursting queue (unfinished
implementation)

SQUID

Scheduler

Cloud bursting queue

Cloud-dedicated queue

Lustre

CPU computing nodes
Microsoft Azure

NodeNodeNodeNode

NFS
CPU computing nodes

NodeNodeNodeNode

Job allocation

Job allocation

NFS

SQUID

Lustre

IPsec VPN

Step 1

NFS

Step 3

Fig. 4 The I/O time with the staging
functionality unable and enable (BT-IO).

Fig. 3 The staging functionality.

Fig. 2 The cloud bursting environment on SQUID.

Fig. 1 Overview of cloud bursting.

Tab. 1 The three operation policy.

Fig. 5 The I/O time and the stage-out time
with the staging functionality enable (BT-IO).

The users manually copy input data to a local storage
before executing their jobs. (stage-in)Step 1

The jobs access the input/output data on the local storage.Step 2

The users manually copy the output data to Luster after
executing the jobs. (stage-out)Step 3

Fig. 6 The cost with the staging
functionality unable and enable (BT-IO).

Microsoft Azure

CPU

Local storage

Step 2

Node

output
data

the Internet

IPsec VPN

Transparency

Policy 1

Policy 2

Policy 3

Usage

easy

difficult

easy

Performance

low

high

high

Cost

low

high

low

Cloud

Offloading
the workload

Job

Job

Job

Job

Job

Job

JobJob

Input
data

