ns-3-based Interconnect Simulator for Network Simulation with Job Scheduling

Background : Aim of Interconnect Design in Supercomputing Systems is Changing

A variety of jobs are performed on today's supercomputing systems. The number of compute nodes requested by such jobs is diverse and then much inter-node communication take place.

⇒ Interconnects of supercomputing systems should be designed using simulators to examine the performance in communication.

Traditional Supercomputing Systems		Next Supercomputing System	
Expected Workload	Computation-intensive MPI (Message Passing Interface) jobs.	Expected Workload	Communication-intensive jobs using distributed processing frameworks.
Aim of Interconnect Design	Focus on the cost to increase the number of compute nodes.	Aim of Interconnect Design	Focus on the performance to accelerate inter-node communication.
Method of Interconnect Design	 Select from stable and mature technologies such as Fat-tree and ECMP. Parameters are determined by calculations and other simple estimates. 	Method of Interconnect Design	 Select from stable and mature technologies and/or state-of-the-art technologies such as DragonFly and adaptive routing. Parameters are determined by simulations to examine interconnect performance.

Problem: The Effects of Job Scheduling Are Missed by Existing Network Simulators

When simulating interconnects in a supercomputing system, the simulation result is incorrect in the case of using only existing network simulators. The reason is existing network simulators cannot reproduce job placement by job schedulers.

. Traffic patterns* are changed by job placement. (*A set of communications within a certain time period)

Bandwidth consumption increases when communicating between distant nodes ⇒ Without simulating job placement

ple of link capacity consumption depending on job placement

· Adversarial traffic patterns** cause misunderstanding of the network performance. (**Traffic patterns that degrade network performance)

es, E. Vallejo, C. Camarero, R. Beivide and M. Valero, "Throughput Unfairness in Dragonfly Networks under Realistic Traffic Patterns," 2015 IEEE International Conference on Cluster Computing, 2015, pp. 801-808, doi: 10.1109/CLUSTER.2015.136

Proposal : ns-3-based Interconnect Simulator for Interconnect Design (In-Progress)

To achieve network simulation with job scheduling, we decided to implement a job scheduling function as a module for ns-3.

·Assets: Interconnect research results are implemented in ns-3, enabling simulations using state-of-the-art technologies. · Expandability: ns-3 is modularized, making it easy to expand the job scheduling functionalities.

·Packet-level simulation: accurate simulation of network latency should reduce performance estimation errors.

