Cybernedia Center Cybernedia Center Osaka University, Japan SC22 BOOTH 1613

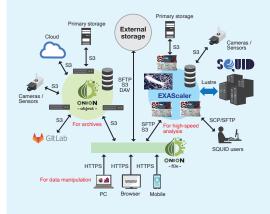
Large-scale Computing Systems at the Cybermedia Center

Overview of High-Performance Computing Environment at the CMC

Large-scale computing systems (OCTOPUS and SQUID) and data aggregate infrastructure (ONION) are deployed on CMC-Supercomputer network, a.k.a CMC-SCinet, a low-latency and wide-bandwidth network. This architectural design allows users to access to large-scale storage systems, perform large-scale high-performance computation and analysis on our large-scale computing systems.

Large-scale Computing System

OCTOPUS



OCTOPUS is short for Osaka university Cybermedia cenTer Over-Petascale Universal Supercomputer. OCTOPUS is a cluster system being operated since December 2017. This system is composed of General purpose CPU nodes, GPU nodes, Large-scale shared-memory nodes, and Xeon Phi nodes, total 319 nodes. These nodes and large-scale storage EXAScaler (Lustre 3.1 PB) are interconnected on InfiniBand EDR (100 Gbps) and form a cluster.

Table 1 Data Sheet of OCTOPUS Large-scale shared-memory General purpose CPU GPU Type of nodes Xeon Phi Intel Xeon Skylake Intel Xeon Skyla Intel Xeon Phi KNI CPU (13 GHz 64 cores (2.6 GHz, 12 cores) x 2 (2.0 GHz, 16 cores) x 8 os RHEL 7.3 # of nodes (total) 236 37 2 44 5,664 888 256 2,816 # of cores (total) # of memory (total) 45 12 8 Peak performance 471.2 TFLOPS 16.4 TFLOPS 858.3 TFLOPS 117.1 TFLOPS NVIDIA Tesla Accelerator P100 x 148

Data Aggregation Infrastructure

ONION

SQUID

SQUID is short for Supercomputer for Quest to Unsolved Interdisciplinary Datascience. SQUID is a new cluster system being operated since May 2021. This system is composed of General purpose CPU nodes, GPU nodes, and Vector nodes, total 1,598 nodes. These nodes and large-scale storage EXAScaler (Lustre 21.2 PB) are interconnected on InfiniBand HDR (200 Gbps) and form a cluster.

Table 2 Data Sheet of SQUID								
Type of nodes	General purpose CPU	GPU	Vector					
CPU	Intel Xeon Icelak	e (2.4 GHz, 38 cores) x 2	AMD EPYC Rome (2.8 GHz, 24 cores)					
OS	CentOS 8.4							
# of nodes (total)	1,520	42	36					
# of cores (total)	115,520	3,192	864					
# of memory (total)	389 TB	22 TB	5 TB					
Peak performance	8.871 PFLOPS	6.797 PFLOPS	0.922 PFLOPS					
Accelerator		NVIDIA A100 x 336	NEC SX-Aurora TSUBASA Type20A x 288					

ONION stands for Osaka university Next-generation Infrastructure for Open research and open innovatioN. ONION is a new data aggregation infrastructure that is linked to SQUID. ONION consists of ONION-object (AWS S3 compatible object storage), ONION-file (storage service using Nextcloud), and EXAScaler (a parallel file system based on Lustre).

ONION makes it easy for users to data between your PC and large-scale computing system. In addition, ONION can be used in a variety of ways, such as immediate sharing of calculation results with those who do not have a SQUID or OCTOPUS account and manipulating data from a smartphone. Of course, it can also be used to store and share research data in the laboratory.

Table 3 EXAScaler (on SQUID)			Table 4 ONION-object		
Effective capacity (HDD)	20 PB			950 TiB * We plan to expanse sequentially	
Effective capacity (NVMe)	1.2 PB		Effective capacity		
Max number of inodes	Approx. 8.8 Billion			Erasure Coding	
Max expected effective throughput (HDD)	Over 160 GB/s		Data protection method	(Data chunk:4 + Parity chunk:2)	
Max expected effective throughput (NVMe)	Write : Over 160 GB/s Read : Over 180 GB/s	'			

Contact : sc22@ais.cmc.osaka-u.ac.jp http://www.hpc.cmc.osaka-u.ac.jp/en/