

SuperComputing 2012

Architecture of

OpenFlow-based failure avoidance for SAGE

Background

Scientific data has been increasingly growing in size and complexity and therefore visualization technology has started to take a role of more importance. Tiled Display Wall (TDW, Fig.1), which is a single large display device composed of multiple sets of computers and displays, is such visualization technology. In particular, SAGE (Scalable Adaptive Graphics Environment) -based TDW allows scientists to display multiple series of scientific data, each of which might be located on a different site.

Fig.1 Tiled Display Wall

Problem

SAGE has a vulnerability to network failures. Specifically, if a network failure occurs on a network link between visualization application and display nodes, visualization on TDW partly stops (Fig.2).

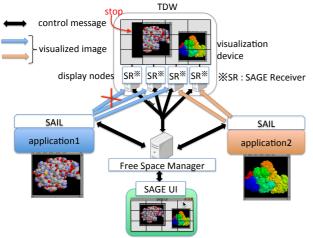
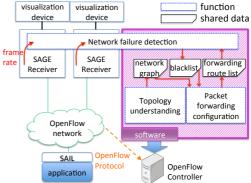



Fig.2 Network vulnerability in SAGE

Proposal

We propose a SAGE functionality that dynamically detects and avoids a network failure on a network link using OpenFlow, which allows to control network dynamically. The OpenFlow-based network failure avoidance functionality is composed of three functions.

- Network failure detection function detects the network failure between a visualization application and a display node.
- Topology understanding function grasps the network topology which OpenFlow Switches form.
- Packet forwarding configuration function discovers an alternate route and configures rules to OpenFlow Switches so that packets pass along the route.

Demonstration Environment

Visualization Applications

Singapore

Japan

Display Nodes
(SAGE Receiver)

OpenFlow
Switches

Free Space Manager & Controller

Visualization Application

OpenFlow
Controller

Visualization Application

Fig.4 Demonstration Environment

E-mail: furuichi.tomoya@lab.ime.cmc.osaka-u.ac.ip

TEL: (+81)06-6850-6827

Contacts